Compare commits
3 Commits
feature/vc
...
v1.2.17
Author | SHA1 | Date | |
---|---|---|---|
1cf8fbb91d | |||
16bd7ec544 | |||
4d5a7b4f5e |
12
CHANGELOG.md
12
CHANGELOG.md
@@ -11,11 +11,17 @@ und dieses Projekt adhäriert zu [Semantic Versioning](https://semver.org/lang/d
|
||||
- Export-Button in der Benutzeroberfläche
|
||||
- Automatische Formatierung der CSV-Datei mit allen relevanten Kundendaten
|
||||
|
||||
## [1.2.17] - 2024-03-19
|
||||
### Geändert
|
||||
- Optimierte Datenbankverbindungen für bessere Thread-Sicherheit
|
||||
- Verbesserte Datenbankindizes für schnellere Suchen
|
||||
- Verbesserte Fehlerbehandlung bei Datenbankoperationen
|
||||
|
||||
## [1.2.16] - 2024-03-21
|
||||
### Geändert
|
||||
- Verbesserte Darstellung der Suchergebnisse mit rechtsbündigen Aktionen
|
||||
- Optimierte CSS-Styles für bessere Lesbarkeit und Layout
|
||||
- JavaScript-Code in separate Datei ausgelagert für bessere Wartbarkeit
|
||||
- Verbesserte Suchfunktion: Highlighting für allgemeine Suche in allen Feldern
|
||||
- Optimierte Reset-Buttons in den Suchfeldern
|
||||
- Verbesserte CSS-Styles für die Suchfeld-Icons
|
||||
|
||||
## [1.2.15] - 2024-03-20
|
||||
### Hinzugefügt
|
||||
|
184
app.py
184
app.py
@@ -5,59 +5,48 @@ import logging
|
||||
import numpy as np
|
||||
from datetime import datetime, timedelta
|
||||
from dotenv import load_dotenv
|
||||
import requests
|
||||
from collections import defaultdict
|
||||
import ipaddress
|
||||
import csv
|
||||
import sqlite3
|
||||
from functools import wraps
|
||||
from contextlib import contextmanager
|
||||
import time
|
||||
import threading
|
||||
|
||||
app = Flask(__name__, static_folder='static')
|
||||
app.config['SECRET_KEY'] = os.getenv('SECRET_KEY', 'dev')
|
||||
app.config['SECRET_KEY'] = os.environ.get('SECRET_KEY', 'dev')
|
||||
app.config['ALLOWED_IP_RANGES'] = os.getenv('ALLOWED_IP_RANGES', '192.168.0.0/16,10.0.0.0/8').split(',')
|
||||
app.config['VERSION'] = '1.2.16'
|
||||
app.config['VERSION'] = '1.2.17'
|
||||
app.config['DATABASE'] = 'data/customers.db'
|
||||
app.config['DATABASE_TIMEOUT'] = 20
|
||||
app.config['DATABASE_POOL_SIZE'] = 5
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Pfad zur Datenbank
|
||||
DB_FILE = 'data/customers.db'
|
||||
|
||||
# Lade Umgebungsvariablen
|
||||
load_dotenv()
|
||||
|
||||
# Statisches Passwort aus der .env Datei
|
||||
STATIC_PASSWORD = os.getenv('LOGIN_PASSWORD', 'default-password')
|
||||
|
||||
def isIPInSubnet(ip, subnet):
|
||||
"""Überprüft, ob eine IP-Adresse in einem Subnetz liegt."""
|
||||
try:
|
||||
# Teile die IP und das Subnetz in ihre Komponenten
|
||||
subnet_ip, bits = subnet.split('/')
|
||||
ip_parts = [int(x) for x in ip.split('.')]
|
||||
subnet_parts = [int(x) for x in subnet_ip.split('.')]
|
||||
|
||||
# Konvertiere IPs in 32-bit Zahlen
|
||||
ip_num = (ip_parts[0] << 24) | (ip_parts[1] << 16) | (ip_parts[2] << 8) | ip_parts[3]
|
||||
subnet_num = (subnet_parts[0] << 24) | (subnet_parts[1] << 16) | (subnet_parts[2] << 8) | subnet_parts[3]
|
||||
|
||||
# Erstelle die Subnetzmaske
|
||||
mask = ~((1 << (32 - int(bits))) - 1)
|
||||
|
||||
# Prüfe, ob die IP im Subnetz liegt
|
||||
return (ip_num & mask) == (subnet_num & mask)
|
||||
except Exception as e:
|
||||
logger.error(f"Fehler bei der IP-Überprüfung: {str(e)}")
|
||||
return False
|
||||
# Thread-lokaler Speicher für Datenbankverbindungen
|
||||
thread_local = threading.local()
|
||||
|
||||
def get_db_connection():
|
||||
"""Erstellt eine neue Datenbankverbindung mit Timeout"""
|
||||
conn = sqlite3.connect(DB_FILE, timeout=20)
|
||||
conn.row_factory = sqlite3.Row
|
||||
return conn
|
||||
"""Erstellt eine neue Datenbankverbindung für den aktuellen Thread"""
|
||||
if not hasattr(thread_local, "connection"):
|
||||
thread_local.connection = sqlite3.connect(app.config['DATABASE'], timeout=app.config['DATABASE_TIMEOUT'])
|
||||
thread_local.connection.row_factory = sqlite3.Row
|
||||
return thread_local.connection
|
||||
|
||||
@contextmanager
|
||||
def get_db():
|
||||
"""Context Manager für Datenbankverbindungen"""
|
||||
conn = get_db_connection()
|
||||
try:
|
||||
yield conn
|
||||
except Exception:
|
||||
conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
conn.commit()
|
||||
|
||||
def init_db():
|
||||
"""Initialisiert die SQLite-Datenbank mit der notwendigen Tabelle."""
|
||||
conn = get_db_connection()
|
||||
with get_db() as conn:
|
||||
c = conn.cursor()
|
||||
|
||||
try:
|
||||
@@ -84,36 +73,45 @@ def init_db():
|
||||
)
|
||||
''')
|
||||
|
||||
# Erstelle Indizes für alle Suchfelder
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_nummer ON customers(nummer)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_name ON customers(name)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_strasse ON customers(strasse)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_plz ON customers(plz)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_ort ON customers(ort)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_telefon ON customers(telefon)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_mobil ON customers(mobil)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_email ON customers(email)')
|
||||
# Optimierte Indizes für die häufigsten Suchanfragen
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_name_ort ON customers(name, ort)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_fachrichtung ON customers(fachrichtung)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_tag ON customers(tag)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_handy ON customers(handy)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_tele_firma ON customers(tele_firma)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_plz ON customers(plz)')
|
||||
|
||||
# Erstelle einen zusammengesetzten Index für die häufigste Suchkombination
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_name_ort ON customers(name, ort)')
|
||||
# Zusammengesetzter Index für die häufigste Suchkombination
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_search ON customers(name, ort, fachrichtung, tag)')
|
||||
|
||||
conn.commit()
|
||||
logger.info('Datenbank initialisiert')
|
||||
except Exception as e:
|
||||
logger.error(f'Fehler bei der Datenbankinitialisierung: {str(e)}')
|
||||
raise
|
||||
finally:
|
||||
conn.close()
|
||||
|
||||
def isIPInSubnet(ip, subnet):
|
||||
"""Überprüft, ob eine IP-Adresse in einem Subnetz liegt."""
|
||||
try:
|
||||
# Teile die IP und das Subnetz in ihre Komponenten
|
||||
subnet_ip, bits = subnet.split('/')
|
||||
ip_parts = [int(x) for x in ip.split('.')]
|
||||
subnet_parts = [int(x) for x in subnet_ip.split('.')]
|
||||
|
||||
# Konvertiere IPs in 32-bit Zahlen
|
||||
ip_num = (ip_parts[0] << 24) | (ip_parts[1] << 16) | (ip_parts[2] << 8) | ip_parts[3]
|
||||
subnet_num = (subnet_parts[0] << 24) | (subnet_parts[1] << 16) | (subnet_parts[2] << 8) | subnet_parts[3]
|
||||
|
||||
# Erstelle die Subnetzmaske
|
||||
mask = ~((1 << (32 - int(bits))) - 1)
|
||||
|
||||
# Prüfe, ob die IP im Subnetz liegt
|
||||
return (ip_num & mask) == (subnet_num & mask)
|
||||
except Exception as e:
|
||||
logger.error(f"Fehler bei der IP-Überprüfung: {str(e)}")
|
||||
return False
|
||||
|
||||
def import_csv():
|
||||
"""Importiert die CSV-Datei in die Datenbank"""
|
||||
conn = None
|
||||
try:
|
||||
conn = get_db_connection()
|
||||
with get_db() as conn:
|
||||
c = conn.cursor()
|
||||
|
||||
# Lösche bestehende Daten
|
||||
@@ -126,18 +124,24 @@ def import_csv():
|
||||
df.columns = df.columns.str.strip().str.replace('"', '')
|
||||
df = df.apply(lambda x: x.str.strip().str.replace('"', '') if x.dtype == "object" else x)
|
||||
|
||||
for _, row in df.iterrows():
|
||||
c.execute('''
|
||||
# Filtere Datensätze mit Fachrichtung "intern"
|
||||
df = df[df['Fachrichtung'].str.lower() != 'intern']
|
||||
|
||||
# Bereite die Daten für den Batch-Insert vor
|
||||
data = [(
|
||||
row['VorNachname'], row['Nummer'], row['Strasse'], row['PLZ'], row['Ort'],
|
||||
row['Tel'], row['Tel'], row['mail'], row['Fachrichtung'], 'medisoft',
|
||||
row['Handy'], row['Tele Firma'], row['Kontakt1'], row['Kontakt2'], row['Kontakt3']
|
||||
) for _, row in df.iterrows()]
|
||||
|
||||
# Führe Batch-Insert durch
|
||||
c.executemany('''
|
||||
INSERT INTO customers (
|
||||
name, nummer, strasse, plz, ort, telefon, mobil, email,
|
||||
fachrichtung, tag, handy, tele_firma, kontakt1, kontakt2, kontakt3
|
||||
)
|
||||
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
|
||||
''', (
|
||||
row['VorNachname'], row['Nummer'], row['Strasse'], row['PLZ'], row['Ort'],
|
||||
row['Tel'], row['Tel'], row['mail'], row['Fachrichtung'], 'medisoft',
|
||||
row['Handy'], row['Tele Firma'], row['Kontakt1'], row['Kontakt2'], row['Kontakt3']
|
||||
))
|
||||
''', data)
|
||||
else:
|
||||
logger.warning("MEDISOFT CSV-Datei nicht gefunden")
|
||||
|
||||
@@ -148,33 +152,31 @@ def import_csv():
|
||||
df_snk.columns = df_snk.columns.str.strip().str.replace('"', '')
|
||||
df_snk = df_snk.apply(lambda x: x.str.strip().str.replace('"', '') if x.dtype == "object" else x)
|
||||
|
||||
for _, row in df_snk.iterrows():
|
||||
c.execute('''
|
||||
# Filtere Datensätze mit Fachrichtung "intern"
|
||||
df_snk = df_snk[df_snk['Fachrichtung'].str.lower() != 'intern']
|
||||
|
||||
# Bereite die Daten für den Batch-Insert vor
|
||||
data = [(
|
||||
row['VorNachname'], row['Nummer'], row['Strasse'], row['PLZ'], row['Ort'],
|
||||
row['Tel'], row['Tel'], row['mail'], row['Fachrichtung'], 'mediconsult',
|
||||
row['Handy'], row['Tele Firma'], row['Kontakt1'], row['Kontakt2'], row['Kontakt3']
|
||||
) for _, row in df_snk.iterrows()]
|
||||
|
||||
# Führe Batch-Insert durch
|
||||
c.executemany('''
|
||||
INSERT INTO customers (
|
||||
name, nummer, strasse, plz, ort, telefon, mobil, email,
|
||||
fachrichtung, tag, handy, tele_firma, kontakt1, kontakt2, kontakt3
|
||||
)
|
||||
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
|
||||
''', (
|
||||
row['VorNachname'], row['Nummer'], row['Strasse'], row['PLZ'], row['Ort'],
|
||||
row['Tel'], row['Tel'], row['mail'], row['Fachrichtung'], 'mediconsult',
|
||||
row['Handy'], row['Tele Firma'], row['Kontakt1'], row['Kontakt2'], row['Kontakt3']
|
||||
))
|
||||
''', data)
|
||||
else:
|
||||
logger.warning("MEDICONSULT CSV-Datei nicht gefunden")
|
||||
|
||||
conn.commit()
|
||||
logger.info("CSV-Daten erfolgreich in die Datenbank importiert")
|
||||
except Exception as e:
|
||||
logger.error(f"Fehler beim Importieren der CSV-Datei: {str(e)}")
|
||||
raise
|
||||
finally:
|
||||
if conn:
|
||||
conn.close()
|
||||
|
||||
def clean_dataframe(df):
|
||||
"""Konvertiert NaN-Werte in None für JSON-Kompatibilität"""
|
||||
return df.replace({np.nan: None})
|
||||
|
||||
@app.route('/login', methods=['GET', 'POST'])
|
||||
def login():
|
||||
@@ -233,7 +235,7 @@ def search():
|
||||
fachrichtung = request.args.get('fachrichtung', '')
|
||||
tag = request.args.get('tag', 'medisoft')
|
||||
|
||||
conn = get_db_connection()
|
||||
with get_db() as conn:
|
||||
c = conn.cursor()
|
||||
|
||||
# Baue die SQL-Abfrage
|
||||
@@ -314,9 +316,8 @@ def search():
|
||||
sql_query += " ORDER BY name LIMIT 100"
|
||||
|
||||
# Führe die Abfrage aus
|
||||
cursor = conn.cursor()
|
||||
cursor.execute(sql_query, params)
|
||||
results = cursor.fetchall()
|
||||
c.execute(sql_query, params)
|
||||
results = c.fetchall()
|
||||
|
||||
formatted_results = []
|
||||
for row in results:
|
||||
@@ -339,7 +340,6 @@ def search():
|
||||
}
|
||||
formatted_results.append(customer)
|
||||
|
||||
conn.close()
|
||||
return jsonify(formatted_results)
|
||||
|
||||
except Exception as e:
|
||||
@@ -350,7 +350,7 @@ def search():
|
||||
def get_fachrichtungen():
|
||||
try:
|
||||
search_term = request.args.get('q', '').lower()
|
||||
conn = get_db_connection()
|
||||
with get_db() as conn:
|
||||
c = conn.cursor()
|
||||
|
||||
# Hole alle eindeutigen Fachrichtungen, die mit dem Suchbegriff übereinstimmen
|
||||
@@ -365,8 +365,6 @@ def get_fachrichtungen():
|
||||
''', (f'%{search_term}%',))
|
||||
|
||||
fachrichtungen = [row[0] for row in c.fetchall()]
|
||||
conn.close()
|
||||
|
||||
return jsonify(fachrichtungen)
|
||||
except Exception as e:
|
||||
logger.error(f"Fehler beim Abrufen der Fachrichtungen: {str(e)}")
|
||||
@@ -376,7 +374,7 @@ def get_fachrichtungen():
|
||||
def get_orte():
|
||||
try:
|
||||
search_term = request.args.get('q', '').lower()
|
||||
conn = get_db_connection()
|
||||
with get_db() as conn:
|
||||
c = conn.cursor()
|
||||
|
||||
# Hole alle eindeutigen Orte, die mit dem Suchbegriff übereinstimmen
|
||||
@@ -391,8 +389,6 @@ def get_orte():
|
||||
''', (f'%{search_term}%',))
|
||||
|
||||
orte = [row[0] for row in c.fetchall()]
|
||||
conn.close()
|
||||
|
||||
return jsonify(orte)
|
||||
except Exception as e:
|
||||
logger.error(f"Fehler beim Abrufen der Orte: {str(e)}")
|
||||
@@ -406,10 +402,10 @@ def init_app(app):
|
||||
os.makedirs('data', exist_ok=True)
|
||||
|
||||
# Lösche die alte Datenbank, falls sie existiert
|
||||
if os.path.exists(DB_FILE):
|
||||
if os.path.exists(app.config['DATABASE']):
|
||||
try:
|
||||
os.remove(DB_FILE)
|
||||
logger.info(f"Alte Datenbank {DB_FILE} wurde gelöscht")
|
||||
os.remove(app.config['DATABASE'])
|
||||
logger.info(f"Alte Datenbank {app.config['DATABASE']} wurde gelöscht")
|
||||
except Exception as e:
|
||||
logger.error(f"Fehler beim Löschen der alten Datenbank: {str(e)}")
|
||||
|
||||
|
@@ -2,6 +2,15 @@ let searchTimeout;
|
||||
let lastResults = [];
|
||||
let fachrichtungTimeout;
|
||||
let ortTimeout;
|
||||
let currentPage = 1;
|
||||
let totalPages = 1;
|
||||
let currentResults = [];
|
||||
let currentSearchQuery = '';
|
||||
let currentFilters = {
|
||||
fachrichtung: '',
|
||||
plz: '',
|
||||
ort: ''
|
||||
};
|
||||
|
||||
function createPhoneLink(phone) {
|
||||
if (!phone) return '';
|
||||
@@ -220,14 +229,13 @@ function exportToVCF(customer) {
|
||||
const vcfData = [
|
||||
'BEGIN:VCARD',
|
||||
'VERSION:3.0',
|
||||
`FN:${customer.vorname || ''} ${customer.nachname || ''}`,
|
||||
`N:${customer.nachname || ''};${customer.vorname || ''};;`,
|
||||
`FN:${customer.name || ''}`,
|
||||
`N:${customer.name || ''};;;`,
|
||||
`TEL;TYPE=CELL:${customer.telefon || ''}`,
|
||||
`TEL;TYPE=HOME:${customer.telefon_2 || ''}`,
|
||||
`TEL;TYPE=HOME:${customer.mobil || ''}`,
|
||||
`EMAIL:${customer.email || ''}`,
|
||||
`ADR;TYPE=HOME:;;${customer.strasse || ''};${customer.plz || ''};${customer.ort || ''};${customer.land || ''}`,
|
||||
`ORG:${customer.firma || ''}`,
|
||||
`NOTE:${customer.notizen || ''}`,
|
||||
`ADR;TYPE=HOME:;;${customer.strasse || ''};${customer.plz || ''};${customer.ort || ''};`,
|
||||
`ORG:${customer.fachrichtung || ''}`,
|
||||
'END:VCARD'
|
||||
].join('\n');
|
||||
|
||||
@@ -235,7 +243,7 @@ function exportToVCF(customer) {
|
||||
const url = window.URL.createObjectURL(blob);
|
||||
const a = document.createElement('a');
|
||||
a.href = url;
|
||||
a.download = `kontakt_${customer.vorname || ''}_${customer.nachname || ''}_${new Date().toISOString().split('T')[0]}.vcf`;
|
||||
a.download = `kontakt_${customer.name || ''}_${new Date().toISOString().split('T')[0]}.vcf`;
|
||||
document.body.appendChild(a);
|
||||
a.click();
|
||||
window.URL.revokeObjectURL(url);
|
||||
@@ -332,6 +340,7 @@ function clearInput(inputId) {
|
||||
}
|
||||
|
||||
async function searchCustomers() {
|
||||
let searchTimeout;
|
||||
const loading = document.getElementById('loading');
|
||||
const results = document.getElementById('results');
|
||||
const generalSearch = document.getElementById('q').value;
|
||||
@@ -341,6 +350,8 @@ async function searchCustomers() {
|
||||
const plzSearch = document.getElementById('plzInput').value;
|
||||
const fachrichtungSearch = document.getElementById('fachrichtungInput').value;
|
||||
const tagFilter = document.getElementById('tagFilter').value;
|
||||
currentSearchQuery = generalSearch;
|
||||
currentPage = 1;
|
||||
|
||||
// Zeige Ladeanimation
|
||||
loading.style.display = 'block';
|
||||
|
Reference in New Issue
Block a user