Hervorhebung des Tag-Feldes in den Suchergebnissen: - Blauer Hintergrund für MEDISOFT-Tags - Oranger Hintergrund für MEDICONSULT-Tags - Verbesserte visuelle Darstellung der Tags
This commit is contained in:
398
app.py
398
app.py
@@ -20,9 +20,6 @@ logger = logging.getLogger(__name__)
|
||||
# Version der Anwendung
|
||||
VERSION = "1.2.1"
|
||||
|
||||
# Pfad zur CSV-Datei
|
||||
CSV_FILE = 'data/customers.csv'
|
||||
|
||||
# Pfad zur Datenbank
|
||||
DB_FILE = 'data/customers.db'
|
||||
|
||||
@@ -33,213 +30,220 @@ load_dotenv()
|
||||
STATIC_PASSWORD = os.getenv('LOGIN_PASSWORD', 'default-password')
|
||||
ALLOWED_IP_RANGES = os.getenv('ALLOWED_IP_RANGES', '').split(',')
|
||||
|
||||
def get_db_connection():
|
||||
"""Erstellt eine neue Datenbankverbindung mit Timeout"""
|
||||
conn = sqlite3.connect(DB_FILE, timeout=20)
|
||||
conn.row_factory = sqlite3.Row
|
||||
return conn
|
||||
|
||||
def init_db():
|
||||
"""Initialisiert die SQLite-Datenbank mit der notwendigen Tabelle."""
|
||||
conn = sqlite3.connect(DB_FILE)
|
||||
conn = get_db_connection()
|
||||
c = conn.cursor()
|
||||
|
||||
# Erstelle die Tabelle
|
||||
c.execute('''
|
||||
CREATE TABLE IF NOT EXISTS customers (
|
||||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
nummer TEXT,
|
||||
name TEXT,
|
||||
strasse TEXT,
|
||||
plz TEXT,
|
||||
ort TEXT,
|
||||
telefon TEXT,
|
||||
mobil TEXT,
|
||||
email TEXT,
|
||||
bemerkung TEXT,
|
||||
fachrichtung TEXT
|
||||
)
|
||||
''')
|
||||
|
||||
# Erstelle Indizes für alle Suchfelder
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_nummer ON customers(nummer)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_name ON customers(name)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_strasse ON customers(strasse)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_plz ON customers(plz)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_ort ON customers(ort)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_telefon ON customers(telefon)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_mobil ON customers(mobil)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_email ON customers(email)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_fachrichtung ON customers(fachrichtung)')
|
||||
|
||||
# Erstelle einen zusammengesetzten Index für die häufigste Suchkombination
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_name_ort ON customers(name, ort)')
|
||||
|
||||
conn.commit()
|
||||
conn.close()
|
||||
logger.info('Datenbank initialisiert')
|
||||
|
||||
def import_csv():
|
||||
"""Importiert die Daten aus der CSV-Datei in die SQLite-Datenbank."""
|
||||
conn = sqlite3.connect(DB_FILE)
|
||||
c = conn.cursor()
|
||||
|
||||
# Lösche bestehende Daten
|
||||
c.execute('DELETE FROM customers')
|
||||
|
||||
try:
|
||||
# Lese die CSV-Datei mit pandas
|
||||
df = pd.read_csv(CSV_FILE, sep=',', encoding='utf-8', quotechar='"')
|
||||
# Erstelle die Kunden-Tabelle
|
||||
c.execute('''
|
||||
CREATE TABLE IF NOT EXISTS customers (
|
||||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
nummer TEXT,
|
||||
name TEXT,
|
||||
strasse TEXT,
|
||||
plz TEXT,
|
||||
ort TEXT,
|
||||
telefon TEXT,
|
||||
mobil TEXT,
|
||||
email TEXT,
|
||||
bemerkung TEXT,
|
||||
fachrichtung TEXT,
|
||||
tag TEXT
|
||||
)
|
||||
''')
|
||||
|
||||
# Entferne Anführungszeichen aus den Spaltennamen
|
||||
df.columns = df.columns.str.strip('"')
|
||||
# Erstelle Indizes für alle Suchfelder
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_nummer ON customers(nummer)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_name ON customers(name)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_strasse ON customers(strasse)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_plz ON customers(plz)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_ort ON customers(ort)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_telefon ON customers(telefon)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_mobil ON customers(mobil)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_email ON customers(email)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_fachrichtung ON customers(fachrichtung)')
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_tag ON customers(tag)')
|
||||
|
||||
# Entferne Anführungszeichen aus den Werten
|
||||
for col in df.columns:
|
||||
if df[col].dtype == 'object':
|
||||
df[col] = df[col].str.strip('"')
|
||||
|
||||
# Kombiniere Vorname und Nachname
|
||||
df['name'] = df['Vorname'] + ' ' + df['Nachname']
|
||||
|
||||
# Importiere die Daten
|
||||
for _, row in df.iterrows():
|
||||
c.execute('''
|
||||
INSERT INTO customers (nummer, name, strasse, plz, ort, telefon, mobil, email, bemerkung, fachrichtung)
|
||||
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
|
||||
''', (
|
||||
row['Nummer'],
|
||||
row['name'],
|
||||
row['Strasse'],
|
||||
row['PLZ'],
|
||||
row['Ort'],
|
||||
row['Tel'],
|
||||
row['Handy'],
|
||||
row['mail'],
|
||||
f"Fachrichtung: {row['Fachrichtung']}",
|
||||
row['Fachrichtung']
|
||||
))
|
||||
# Erstelle einen zusammengesetzten Index für die häufigste Suchkombination
|
||||
c.execute('CREATE INDEX IF NOT EXISTS idx_customers_name_ort ON customers(name, ort)')
|
||||
|
||||
conn.commit()
|
||||
logger.info('CSV-Daten erfolgreich in die Datenbank importiert')
|
||||
logger.info('Datenbank initialisiert')
|
||||
except Exception as e:
|
||||
logger.error(f'Fehler beim Import der CSV-Daten: {str(e)}')
|
||||
logger.error(f'Fehler bei der Datenbankinitialisierung: {str(e)}')
|
||||
raise
|
||||
finally:
|
||||
conn.close()
|
||||
|
||||
def search_customers(search_params):
|
||||
"""Sucht nach Kunden basierend auf den Suchparametern."""
|
||||
# Prüfe, ob alle Suchfelder leer sind
|
||||
if not any([
|
||||
search_params.get('q'),
|
||||
search_params.get('name'),
|
||||
search_params.get('ort'),
|
||||
search_params.get('nummer'),
|
||||
search_params.get('plz'),
|
||||
search_params.get('telefon'),
|
||||
search_params.get('email'),
|
||||
search_params.get('fachrichtung')
|
||||
]):
|
||||
return []
|
||||
|
||||
conn = sqlite3.connect(DB_FILE)
|
||||
c = conn.cursor()
|
||||
|
||||
def import_csv():
|
||||
"""Importiert die CSV-Datei in die Datenbank"""
|
||||
conn = None
|
||||
try:
|
||||
# Baue die SQL-Abfrage dynamisch auf
|
||||
query = "SELECT * FROM customers WHERE 1=1"
|
||||
params = []
|
||||
conn = get_db_connection()
|
||||
c = conn.cursor()
|
||||
|
||||
# Allgemeine Suche über alle Felder
|
||||
if search_params.get('q'):
|
||||
search_term = f"%{search_params['q']}%"
|
||||
operator = search_params.get('operator', 'or').upper()
|
||||
# Lösche bestehende Daten
|
||||
c.execute('DELETE FROM customers')
|
||||
|
||||
# Importiere MEDISOFT-Daten
|
||||
if os.path.exists('data/customers.csv'):
|
||||
logger.info("Importiere MEDISOFT-Daten...")
|
||||
df = pd.read_csv('data/customers.csv', encoding='utf-8')
|
||||
df.columns = df.columns.str.strip().str.replace('"', '')
|
||||
df = df.apply(lambda x: x.str.strip().str.replace('"', '') if x.dtype == "object" else x)
|
||||
df['name'] = df['Vorname'] + ' ' + df['Nachname']
|
||||
|
||||
if operator == 'AND':
|
||||
# Bei UND-Verknüpfung müssen alle Begriffe in mindestens einem Feld vorkommen
|
||||
terms = search_params['q'].split()
|
||||
conditions = []
|
||||
for term in terms:
|
||||
term = f"%{term}%"
|
||||
conditions.append("(name LIKE ? OR ort LIKE ? OR nummer LIKE ? OR telefon LIKE ? OR mobil LIKE ? OR email LIKE ? OR bemerkung LIKE ? OR fachrichtung LIKE ?)")
|
||||
params.extend([term] * 8)
|
||||
query += " AND " + " AND ".join(conditions)
|
||||
else:
|
||||
# Bei ODER-Verknüpfung (Standard) muss mindestens ein Begriff in einem Feld vorkommen
|
||||
query += " AND (name LIKE ? OR ort LIKE ? OR nummer LIKE ? OR telefon LIKE ? OR mobil LIKE ? OR email LIKE ? OR bemerkung LIKE ? OR fachrichtung LIKE ?)"
|
||||
params.extend([search_term] * 8)
|
||||
for _, row in df.iterrows():
|
||||
c.execute('''
|
||||
INSERT INTO customers (name, nummer, strasse, plz, ort, telefon, mobil, email, fachrichtung, tag)
|
||||
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
|
||||
''', (row['name'], row['Nummer'], row['Strasse'], row['PLZ'], row['Ort'],
|
||||
row['Tel'], row['Handy'], row['mail'], row['Fachrichtung'], 'medisoft'))
|
||||
else:
|
||||
logger.warning("MEDISOFT CSV-Datei nicht gefunden")
|
||||
|
||||
# Spezifische Suche für einzelne Felder
|
||||
if search_params.get('name'):
|
||||
query += " AND name LIKE ?"
|
||||
params.append(f"%{search_params['name']}%")
|
||||
# Importiere MEDICONSULT-Daten
|
||||
if os.path.exists('data/customers_snk.csv'):
|
||||
logger.info("Importiere MEDICONSULT-Daten...")
|
||||
df_snk = pd.read_csv('data/customers_snk.csv', encoding='utf-8')
|
||||
df_snk.columns = df_snk.columns.str.strip().str.replace('"', '')
|
||||
df_snk = df_snk.apply(lambda x: x.str.strip().str.replace('"', '') if x.dtype == "object" else x)
|
||||
df_snk['name'] = df_snk['Vorname'] + ' ' + df_snk['Nachname']
|
||||
|
||||
for _, row in df_snk.iterrows():
|
||||
c.execute('''
|
||||
INSERT INTO customers (name, nummer, strasse, plz, ort, telefon, mobil, email, fachrichtung, tag)
|
||||
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
|
||||
''', (row['name'], row['Nummer'], row['Strasse'], row['PLZ'], row['Ort'],
|
||||
row['Tel'], row['Handy'], row['mail'], row['Fachrichtung'], 'mediconsult'))
|
||||
else:
|
||||
logger.warning("MEDICONSULT CSV-Datei nicht gefunden")
|
||||
|
||||
if search_params.get('ort'):
|
||||
query += " AND ort LIKE ?"
|
||||
params.append(f"%{search_params['ort']}%")
|
||||
|
||||
if search_params.get('nummer'):
|
||||
query += " AND nummer LIKE ?"
|
||||
params.append(f"%{search_params['nummer']}%")
|
||||
|
||||
if search_params.get('plz'):
|
||||
query += " AND plz LIKE ?"
|
||||
params.append(f"%{search_params['plz']}%")
|
||||
conn.commit()
|
||||
logger.info("CSV-Daten erfolgreich in die Datenbank importiert")
|
||||
except Exception as e:
|
||||
logger.error(f"Fehler beim Importieren der CSV-Datei: {str(e)}")
|
||||
raise
|
||||
finally:
|
||||
if conn:
|
||||
conn.close()
|
||||
|
||||
def search_customers():
|
||||
try:
|
||||
q = request.args.get('q', '')
|
||||
name = request.args.get('name', '')
|
||||
ort = request.args.get('ort', '')
|
||||
nummer = request.args.get('nummer', '')
|
||||
plz = request.args.get('plz', '')
|
||||
fachrichtung = request.args.get('fachrichtung', '')
|
||||
operator = request.args.get('operator', 'or')
|
||||
|
||||
conn = get_db_connection()
|
||||
c = conn.cursor()
|
||||
|
||||
# Basis-SQL-Query
|
||||
query = '''
|
||||
SELECT DISTINCT
|
||||
c.id,
|
||||
c.name,
|
||||
c.nummer,
|
||||
c.strasse,
|
||||
c.plz,
|
||||
c.ort,
|
||||
c.telefon,
|
||||
c.mobil,
|
||||
c.email,
|
||||
c.fachrichtung,
|
||||
c.tag
|
||||
FROM customers c
|
||||
WHERE 1=1
|
||||
'''
|
||||
params = []
|
||||
|
||||
# Suchbedingungen
|
||||
conditions = []
|
||||
if q:
|
||||
search_terms = q.split()
|
||||
if operator == 'and':
|
||||
for term in search_terms:
|
||||
conditions.append('''
|
||||
(c.name LIKE ? OR c.nummer LIKE ? OR c.strasse LIKE ?
|
||||
OR c.plz LIKE ? OR c.ort LIKE ? OR c.telefon LIKE ?
|
||||
OR c.mobil LIKE ? OR c.email LIKE ? OR c.fachrichtung LIKE ?
|
||||
OR c.tag LIKE ?)
|
||||
''')
|
||||
params.extend([f'%{term}%'] * 10)
|
||||
else:
|
||||
term_conditions = []
|
||||
for term in search_terms:
|
||||
term_conditions.append('''
|
||||
(c.name LIKE ? OR c.nummer LIKE ? OR c.strasse LIKE ?
|
||||
OR c.plz LIKE ? OR c.ort LIKE ? OR c.telefon LIKE ?
|
||||
OR c.mobil LIKE ? OR c.email LIKE ? OR c.fachrichtung LIKE ?
|
||||
OR c.tag LIKE ?)
|
||||
''')
|
||||
params.extend([f'%{term}%'] * 10)
|
||||
conditions.append('(' + ' OR '.join(term_conditions) + ')')
|
||||
|
||||
if name:
|
||||
conditions.append('c.name LIKE ?')
|
||||
params.append(f'%{name}%')
|
||||
if ort:
|
||||
conditions.append('c.ort LIKE ?')
|
||||
params.append(f'%{ort}%')
|
||||
if nummer:
|
||||
conditions.append('c.nummer LIKE ?')
|
||||
params.append(f'%{nummer}%')
|
||||
if plz:
|
||||
conditions.append('c.plz LIKE ?')
|
||||
params.append(f'%{plz}%')
|
||||
if fachrichtung:
|
||||
conditions.append('c.fachrichtung LIKE ?')
|
||||
params.append(f'%{fachrichtung}%')
|
||||
|
||||
if conditions:
|
||||
query += ' AND ' + ' AND '.join(conditions)
|
||||
|
||||
if search_params.get('fachrichtung'):
|
||||
query += " AND fachrichtung LIKE ?"
|
||||
params.append(f"%{search_params['fachrichtung']}%")
|
||||
|
||||
# Führe die Abfrage aus
|
||||
c.execute(query, params)
|
||||
results = c.fetchall()
|
||||
|
||||
|
||||
# Formatiere die Ergebnisse
|
||||
customers = []
|
||||
formatted_results = []
|
||||
for row in results:
|
||||
customer = {
|
||||
'id': row[0],
|
||||
'nummer': row[1],
|
||||
'name': row[2],
|
||||
'name': row[1],
|
||||
'nummer': row[2],
|
||||
'strasse': row[3],
|
||||
'plz': row[4],
|
||||
'ort': row[5],
|
||||
'telefon': row[6],
|
||||
'mobil': row[7],
|
||||
'email': row[8],
|
||||
'bemerkung': row[9],
|
||||
'fachrichtung': row[10]
|
||||
'fachrichtung': row[9],
|
||||
'tag': row[10]
|
||||
}
|
||||
customers.append(customer)
|
||||
|
||||
return customers
|
||||
except Exception as e:
|
||||
logger.error(f"Fehler bei der Kundensuche: {str(e)}")
|
||||
raise
|
||||
finally:
|
||||
formatted_results.append(customer)
|
||||
|
||||
conn.close()
|
||||
return jsonify(formatted_results)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Fehler bei der Suche: {str(e)}")
|
||||
return jsonify({'error': str(e)}), 500
|
||||
|
||||
def clean_dataframe(df):
|
||||
"""Konvertiert NaN-Werte in None für JSON-Kompatibilität"""
|
||||
return df.replace({np.nan: None})
|
||||
|
||||
# CSV-Datei laden
|
||||
def load_data():
|
||||
try:
|
||||
logger.info("Versuche CSV-Datei zu laden...")
|
||||
if not os.path.exists(CSV_FILE):
|
||||
logger.error(f"CSV-Datei '{CSV_FILE}' nicht gefunden!")
|
||||
return None
|
||||
|
||||
# Lade CSV mit Komma als Trennzeichen
|
||||
df = pd.read_csv(CSV_FILE, sep=',', encoding='utf-8', quotechar='"')
|
||||
# Entferne Anführungszeichen aus den Spaltennamen
|
||||
df.columns = df.columns.str.strip('"')
|
||||
# Entferne Anführungszeichen aus den Werten
|
||||
for col in df.columns:
|
||||
if df[col].dtype == 'object':
|
||||
df[col] = df[col].str.strip('"')
|
||||
df = clean_dataframe(df)
|
||||
logger.info(f"CSV-Datei erfolgreich geladen. {len(df)} Einträge gefunden.")
|
||||
return df
|
||||
except Exception as e:
|
||||
logger.error(f"Fehler beim Laden der CSV-Datei: {str(e)}")
|
||||
return None
|
||||
|
||||
@app.route('/login', methods=['GET', 'POST'])
|
||||
def login():
|
||||
@@ -296,38 +300,44 @@ def index():
|
||||
@app.route('/search')
|
||||
def search():
|
||||
try:
|
||||
# Hole die Suchparameter aus der Anfrage
|
||||
search_params = {
|
||||
'name': request.args.get('name', ''),
|
||||
'ort': request.args.get('ort', ''),
|
||||
'nummer': request.args.get('nummer', ''),
|
||||
'plz': request.args.get('plz', ''),
|
||||
'telefon': request.args.get('telefon', ''),
|
||||
'email': request.args.get('email', ''),
|
||||
'q': request.args.get('q', ''),
|
||||
'fachrichtung': request.args.get('fachrichtung', ''),
|
||||
'operator': request.args.get('operator', 'or')
|
||||
}
|
||||
|
||||
# Führe die Suche in der Datenbank durch
|
||||
results = search_customers(search_params)
|
||||
# Führe die Suche durch und hole die Ergebnisse
|
||||
results = search_customers()
|
||||
|
||||
# Wenn results ein Response-Objekt ist, geben wir es direkt zurück
|
||||
if isinstance(results, tuple):
|
||||
return results
|
||||
|
||||
# Protokolliere die Anzahl der gefundenen Ergebnisse
|
||||
logger.info(f'Suchergebnisse gefunden: {len(results)}')
|
||||
logger.info(f'Suchergebnisse gefunden: {len(results.get_json())}')
|
||||
|
||||
return jsonify(results)
|
||||
return results
|
||||
except Exception as e:
|
||||
logger.error(f'Fehler bei der Suche: {str(e)}')
|
||||
return jsonify({"error": str(e)}), 500
|
||||
return jsonify({'error': str(e)}), 500
|
||||
|
||||
def init_app(app):
|
||||
"""Initialisiert die Anwendung mit allen notwendigen Einstellungen."""
|
||||
with app.app_context():
|
||||
# Initialisiere die Datenbank
|
||||
init_db()
|
||||
# Importiere die CSV-Daten
|
||||
import_csv()
|
||||
logger.info("Anwendung erfolgreich initialisiert")
|
||||
try:
|
||||
# Stelle sicher, dass der data-Ordner existiert
|
||||
os.makedirs('data', exist_ok=True)
|
||||
|
||||
# Lösche die alte Datenbank, falls sie existiert
|
||||
if os.path.exists(DB_FILE):
|
||||
try:
|
||||
os.remove(DB_FILE)
|
||||
logger.info(f"Alte Datenbank {DB_FILE} wurde gelöscht")
|
||||
except Exception as e:
|
||||
logger.error(f"Fehler beim Löschen der alten Datenbank: {str(e)}")
|
||||
|
||||
# Initialisiere die Datenbank
|
||||
init_db()
|
||||
# Importiere die CSV-Daten
|
||||
import_csv()
|
||||
logger.info("Anwendung erfolgreich initialisiert")
|
||||
except Exception as e:
|
||||
logger.error(f"Fehler bei der Initialisierung: {str(e)}")
|
||||
raise
|
||||
|
||||
# Initialisiere die App
|
||||
init_app(app)
|
||||
|
Reference in New Issue
Block a user